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ABSTRACT

CVIC: Cluster Validation Using Instance-Based Confidences

Dean M. LeBaron
Department of Computer Science, BYU

Master of Science

As unlabeled data becomes increasingly available, the need for robust data mining
techniques increases as well. Clustering is a common data mining tool which seeks to find
related, independent patterns in data called clusters. The cluster validation problem addresses
the question of how well a given clustering fits the data set. We present CVIC (cluster
validation using instance-based confidences) which assigns confidence scores to each individual
instance, as opposed to more traditional methods which focus on the clusters themselves.
CVIC trains supervised learners to recreate the clustering, and instances are scored based on
output from the learners which corresponds to the confidence that the instance was clustered
correctly. One consequence of individually validated instances is the ability to direct users to
instances in a cluster that are either potentially misclustered or correctly clustered. Instances
with low confidences can either be manually inspected or reclustered and instances with high
confidences can be automatically labeled. We compare CVIC to three competing methods for
assigning confidence scores and show results on CVIC’s ability to successfully assign scores
that result in higher average precision and recall for detecting misclustered and correctly
clustered instances across five clustering algorithms on twenty data sets including handwritten
historical image data provided by Ancestry.com.

Keywords: clustering, validation, cluster confidence, supervised learners
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Chapter 1

Introduction

Because of the ill-defined nature of clustering there are several cluster validity indices

which seek to inform the user of the goodness or quality of a clustering [10, 11, 23, 42]. In

general, these indices are used to select the optimal number of clusters, k, for algorithms

that are parametrized by k. This is known as the cluster validity problem. While this is

an important question to answer, one application of validity indices that has not been well

explored is instance level confidence scores. Such instance level scores can validate a clustering

by detecting both high and low confidence points, which in turn informs the end-user of the

quality of the clustering at a more granular level.

We present CVIC: a Cluster Validation method using Instance-based Confidences.

CVIC is a technique that looks at every individual instance in a given clustering and assigns

a confidence score to each instance. These scores represent the belief that a given instance

belongs to a cluster and therefore has the same class as the rest of the instances in the

cluster. This is accomplished in a pseudo-supervised fashion using the clustering itself to

assign targets to the data which can then be used to train any traditional supervised model

such as a neural network, support vector machine, decision tree, etc. The output of the

learner reflects the confidence that a given instance should have a particular label. We show

that CVIC assigns confidence scores to clustered instances that can subsequently be used to

discover misclustered or correctly clustered instances with higher precision and recall rates

than other competing distance based techniques from the literature. Moreover, we show that

1
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CVIC provides a unique approach to cluster validation which is partly responsible for its

success.

In clustering applications there are no ground-truth labels and clustering is generally

performed in order to create or discover classes. The application that we are primarily

concerned with is when clustering is used to efficiently assign labels to clusters of data as

opposed to manually labeling each instance. For example, handwritten images of U.S. census

data can be clustered and the data can be labeled by simply labeling the clusters as opposed

to each individual image. This process could save countless man-hours of indexing said images,

but requires that the clusterings are acceptable. In Fig. 1.1, a clustering of census data has

been performed. The six images in the figure all belong to the same cluster, and a human

operator, only seeing this subset of a larger cluster, would label this cluster as “Nebraska”,

thereby labeling all the instances as “Nebraska” including the “Ger-German” image which

should not be a member of this cluster. Therefore, a validation technique which focuses on

individual instances is also needed, particularly one that can assign a confidence score to each

instance allowing the discovery of the “Ger-German” instance and other similarly mislabeled

instances regardless of how they became misclustered-whether through noise, outliers, poor

distance metrics, or poor features. CVIC addresses this problem and its confidence scores

can be thresholded so that points falling below the threshold, such as the “Ger-German”

instance are tagged as needing further inspection and points above some threshold can be

automatically labeled with confidence thus saving the work of manually labeling a data set.

Our work stems from this type of word-spotting application, but has also been applied to

more general clustering tasks, including documents and human faces.

Traditional validity indices do not typically assign individual scores, but rather give

scores to the clusters themselves, potentially missing out on the advantages of considering

each instance individually and calculating the confidence of whether it belongs to its current

cluster or not.

2
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Figure 1.1: Part of a cluster of handwritten census data, including “Nebraska” and “Ger-
German”.

3



www.manaraa.com

Chapter 2

Related Work

In this section we discuss work related to cluster validation and automatic cluster

labeling, such as word-spotting. We introduce the notion of confidence scores and review

indices in the literature that assign scores to individual instances.

2.1 Automated Cluster Labeling

One of the most common applications of using clustering to automatically label data is word

spotting. Word spotting involves using handwritten images to index documents.

The main idea is that images are extracted from historical documents and then the images are

clustered. The clusters are then manually labeled according to the text that is most common

in the cluster. An operator labels a cluster by seeing either just one instance which is nearest

the centroid or perhaps a few instances from the cluster. The label is then propagated to all

the instances in the cluster. These labels are then used to build an index that allows retrieval

of the documents. For example, a cluster of images containing the word congress can be

labeled and then each document that the images were segmented from can now be accessed

by a query containing the word congress similar to the example in Fig. 1.1. This approach

would benefit from instance level confidence scores in order to aid the automated labelings.

Rath and Manmatha [31] used dynamic time warping to measure distances between

images, and used this as a metric for k-means and hierarchical agglomerative clustering

(HAC). They report that the word error rates of clustering 4860 images into 1365 clusters

4
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were 41.58% for k-means. Using HAC with Ward linkage [41] the word error rate was 31.50%.

They mention that these percentages are acceptable, but CVIC could conceivably be used to

detect some erroneous instances from the clusterings, therefore lowering the error rates.

Sankar et al. [33] used a k -nearest neighbor (knn) classifier to automatically label

cluster centroids, which are then used to label the rest of the cluster as opposed to having a

human labeler. The knn classifier uses a training set which consists of labeled data similar

to the data to be clustered. A test set, composed of unlabeled images which is the target

of indexing, is then clustered using hierarchical k-means and the centroids are labeled by

using the trained knn classifier to predict labels. Similar to our work, they are combining

clustering and supervised learning, but their learner is trained with labeled data which reflects

ground-truth that is not the same data set to be indexed and clustered, whereas CVIC

does not train on labeled data that reflects ground truth, but rather training targets come

from the clusters themselves. They also employ a threshold to remove unimportant clusters.

This threshold is related to the score from knn, but since they are only classifying centroids,

the entire cluster is removed if it falls below the threshold. We are interested instead in

thresholding individual points, as opposed to clusters.

5
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2.2 Confidence Scores

Our work relies on a confidence score, which is essentially a score of how confident our model

is that an instance belongs in its cluster. Validity indices which assign scores specifically

to individual instances–as opposed to scoring the entire clustering–are rare in the current

literature. The silhouette index [32] is one which is commonly used, however, and is described

below:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}

where xi is a single instance belonging to a cluster i, and a(xi) and b(xi) are defined as

follows:

a(xi) =
1

|Ci|
∑
y∈Ci

‖xi − y‖

b(xi) = minj=1,...,k;j 6=i(
1

|Cj|
∑
y∈Cj

‖xi − y‖)

where Ci is the cluster that instance xi belongs to, Cj is a cluster the instance is not a

member of, and y ∈ C is a point in the cluster.

The silhouette index scores instances between -1 and 1, where a 1 indicates that the

instance was clustered correctly and a -1 indicates that the instance should belong to a

different cluster. The score compares average dissimilarity within an instance’s own cluster

to the lowest average dissimilarity to any other cluster. This is a prime example of an

index that rewards a well-separated cluster which is also dense. The main weakness with

the silhouette is that in favoring well separated and dense clusters it therefore struggles

with oddly shaped clusters, or clusterings with some dense clusters and some that are less

dense. Specifically, in applications where the data follows a power law, or some other skewed

distribution, silhouette favors the more densely populated clusters over the less dense ones;

depending on the application. For example, with census images dense and sparse clusters

can both have high purity, and an index which is more robust to density is needed.

6
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[27] use a k-nearest neighbors approach to assign scores to individual instances. They

created the isolation index which is described as follows:

I(x) =
1

k
vk(x)

where vk(x) is the number of k-nearest neighbors of x that have the same cluster label as

x. This score is simply the fraction of x’s nearest neighbors that are in the same cluster as

x. The isolation index therefore gives lower confidences to points that are near the border

between another cluster and the cluster containing x. The index does not however give low

confidences to points near the border of the containing cluster, unless another cluster is

nearby. This can also be seen in the silhouette index, since a point on the far side of a cluster

that is not near any other clusters will have a higher confidence score. This observation is

further discussed in section 5.

Another score that can be used to determine how well an individual instance is

clustered is the fuzzy membership score used in fuzzy clustering such as Fuzzy C-Means [4].

The membership is calculated as follows:

w(xi,j) =
1∑c

k=1(
‖xi−cj‖
‖xi−ck‖

)
2

m−1

where wij is the score for instance i belonging to cluster j, and c is the cluster centroid and

m is a fuzzifier. Fuzzy clustering allows instances to have membership in multiple clusters,

and this score could be interpreted as a type of confidence.

In our experiments we compare silhouette, isolation, and fuzzy membership scores to

CVIC as a means to assign scores to the instances in a given clustering. Although silhouette,

isolation, and fuzzy membership were not necessarily intended to be used as a basis for

individual instance confidence, but rather as cluster validation measures, we can still make a

valid comparison to CVIC since they assign some score to each individual instance. However,

to the best of our knowledge, this type of instance-based confidence score does not exist

7
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in the literature, and this is one of the main contributions of our work: a score which is

concerned with determining if any given instance has the same label as the rest of its cluster.

Silhouette, isolation, and fuzzy clustering do address this to a greater extent than any other

methods we are aware of which is why we have included them for comparison.

2.3 Cluster Validation

The cluster validity problem involves determining the correct number of clusters which can

be approximated by several different indices [20, 29]. Typically, a clustering is performed

several times with increasing k values, and the index is calculated after each run. The correct

k corresponds to the maximum, minimum, or elbow value of the index depending on which

index is used. These values can also be used to compare different clusterings with the same k.

Many indices struggle with oddly shaped clusters, or clusters with differing densities, and

therefore newer indices have been designed to handle varying densities [15, 17, 43], but do

not assign scores to individual instances.

In addition, most indices still face the problem of the curse of dimensionality [2]

because of their reliance on a distance metric between points. In a high dimensional setting,

the curse of dimensionality begins to be a concern as all points are essentially the same

distance from each other [3]. CVIC uses a supervised classifier, which does not suffer from

high dimensional data in the same way that something which measures distances would.

However, it is generally understood that a supervised learner needs much more training data

to work well with high dimensional data sets. [40].

8
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Chapter 3

CVIC - Cluster Validation using Instance-based Confidences

In this section we describe the basic outline and implementation of CVIC. Figure 3.1

outlines CVIC and the following subsections explain the process.

Cluster

data

Label

clusters

Train

supervised

learner

Score each

instance

Threshold

scores to

generate

confidences

Figure 3.1: The first three nodes are modular in the sense that different clustering algorithms,
labeling methods, and supervised learning models can be used.

3.1 Initial Clustering and Labeling

CVIC essentially sits on top of a clustering algorithm and is therefore invariant to the

clustering algorithm itself. Our approach to instance-based confidences is through supervised

models, though we do not use ground truth labels to train the models, but rather treat the

given clustering as a sort of pseudo-labeling which can be used to train a model. Specifically,

we treat each cluster as a label for all points contained in the cluster, e.g., points in some

cluster A can be arbitrarily labeled as “A”. This allows the supervised classifier to be trained.

However, we have found that arbitrary labels do not work nearly as well as human assigned

ones. This is due to the fact that in many real-world clustering applications there will be

more than one cluster with the same ground truth label. For instance, census birthplace data

9
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tends to be highly skewed toward the country or state in which the census took place. For

example, the CANADA data set has roughly 54% of its instances with Canada as a ground

truth label, and more than one cluster ends up being labeled as Canada as well. This is

partly due to the fact that many different writers contributed to the census so one Canada

image may look quite different than another image. The inherent difficulty of this type of

clustering task contributes as well. However, the phenomenon of multiple clusters with the

same label simplifies the learner because instead of having k output classes, where k is the

number of clusters, there are m outputs, where m represents the number of uniquely labeled

clusters. Though more common in census data, handwritten text, and object classification,

we expect that often m will be less than k and this is one advantage of casting the problem

into supervised classification with human assigned labels as opposed to traditional cluster

validation. Namely, the classifier is learning the difference between points labeled as one class

and points labeled otherwise. In the case of using human assigned labels CVIC is concerned

with whether an instance belongs to a given class, regardless of how it was clustered. Although

we have found that human labeled clusters help CVIC perform better than using completely

arbitrary labels human assigned labels are not necessary to CVIC’s approach.

However, in applications like word spotting, the manual labelling process will already be

taking place since ground truth values are being discovered through clustering. Furthermore,

the task of labelling the clusters by hand is efficient since the labeler only needs to label

each cluster which is much smaller than the amount of total data. For labelling clusters, the

operator is only shown the n closest images to the cluster’s centroid, where n is small, and

simply labels the cluster according to the majority class. These labels are then propagated

to each point in the cluster. For example, the labeler could be shown the top 5 closest points

to a centroid and assign the label “Germany” which is then automatically assigned to the

remaining points in the cluster which may number in the thousands.

10
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3.2 Training and Initial Scoring

The training of a supervised classifier is at the heart of CVIC’s approach. While theoretically

any classifier could be used we have implemented CVIC with multi-layer perceptrons, support

vector machines, C4.5 trees, random forests, and k-nearest neighbor classifiers. These were

selected for their relative success in classification problems, their relative independence from

distance metrics (except KNN), their representation of a diverse set of algorithms, and

especially for their ability to easily produce a confidence in the classification. We have also

implemented a simple ensemble of these methods. It should be noted that all hyperparameters

to the models were selected through trial-and-error analysis.

MLP

The training of the MLP follows a non-traditional setup because we want to expose the

network to every single instance. In smaller data sets, a validation set for a stopping criteria is

not feasible because the network is attempting to recreate the clustering and smaller clusters

would possibly be under or over represented in a validation set. Therefore, instead of using a

validation set, we include all instances in the training set and stop training after 5 epochs of

no significant improvement where significance is defined as the mean sum squared error of

the network decreasing relative to the previous epoch by at least .01.

Overfit is a very real problem that must be addressed to avoid creating high confidences

in points that were actually clustered poorly. We regularize using dropout [37] at a rate of

10% and weight decay according to the following:

∆wij(t+ 1) = nδjoi − λwij(t)

where ∆wij is the change of weight from node i to j, δj is the error of node j, oi is the output

of node i, n is the learning rate, λ is a constant which we experimentally set to .0001, and t

is time. After the network has been trained we calculate a confidence score for each instance

11
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by running them through the network and getting a final classification. For each instance the

score is calculated as:

conf(x) =
1

2
∗ e

o(h) + eotrue(x)∑|Y |
i eoi(x)

where |Y | is the size of the output layer, o(h) is the output of the node with the highest

activation, otrue(x) is the output of the node which corresponds to x’s label and oi(x) is the

output of every node i in the output layer. Note that if the network correctly classifies the

instance then o(h) = otrue(x) and the score is simply a normalization of the activation, but if

the instance was misclassified the confidence is the average of these two values. Essentially,

for misclassified instances we are lowering the score even more than a simple normalization

would.

SVM

The training of the SVM follows a similar philosophy to the MLP, namely studiously avoid

overfit and obtain confidence scores that take into account the use of the labels to penalize

misclassified instances even more. For our SVMs we leverage the popular LibSVM library [7].

We use degree 2 polynomial kernels, and change the epsilon parameter which is responsible

for the tolerance of the stopping criteria from the default of .0001 to .1, again in an attempt

to avoid the possibility of overfit.

Confidence scores from the SVM are obtained through Platt scaling (a logistic regres-

sion based on the output values), which is provided by the library [28]. Similar to the MLP,

the Platt value from the predicted classification is averaged with the value from the SVM

that corresponds to the instance’s true label (we are averaging results from different SVMs

due to their binary output limitations). The two values will only be different if the model

misclassifies the instance.

12
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C4.5 Tree

Our C4.5 tree follows the basic algorithm outlined in Quinlan [30]. Splitting is done according

to the information gain criterion, and the tree is not allowed to exceed a number of leaf nodes

equal to the number of features in the data set. This can be thought of as a type of pruning,

which is accomplished by splitting nodes with the most gain until the number of leaf nodes is

reached. The confidence score is simply the purity of the leaf node that a given instance falls

into.

Random Forest

50 Classification and Regression Trees (CART) [6] make up the random forest implementation

of CVIC. These trees are trained on a random subset of features with a size equal to the

square root of the number of features. CART uses Gini impurity as its splitting criteria which

is a measure of the probability that an instance would be misclassified given the current

probability distribution at a node. Pruning of trees follows the same method outlined above

for the C4.5 tree. The confidence score is similar to that of the MLP in that it is the average

of two numbers; the fraction of trees with the majority prediction and the fraction of trees

with the correct prediction. These two numbers may be the same, but in the case of a

misclassified instance the confidence score will be lower.

KNN

For our knn we use the five nearest neighbors to classify instances. There is no feature

weighting that takes place and nearest neighbors are calculated according to manhattan

distance. We use a cover tree to speed up the search and the confidence score is simply the

fraction of neighbors that share the same label. This is slightly different than the isolation

index because isolation uses cluster membership whereas our knn uses the labels assigned by

13
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a user and therefore points may come from different clusters but have the same label. If we

were to use arbitrary labellings the two methods would perform the same.

Ensemble

We implemented an ensemble of all of the learners described above taking inspiration from

Smith’s work on instance hardness [36]. The basic idea of instance hardness is that if several

different learners misclassify or struggle to correctly classify a given instance then that instance

can be thought of as “hard”. Hard instances in our problem setting could be potentially

misclustered instances, and easy instances are potentially clustered correctly. In order to get

a confidence score using this type of ensemble we simply ran each instance through each of

the different learners for a total of five models and set the confidence score for the instance

equal to the fraction of learners that correctly classified the instance according to the cluster

labels.

We also tried a “pseudo-ensemble” which simply normalizes the confidence scores

from each different learner between zero and one. A single instance’s confidence score was

then calculated by normalizing across all instances the sum of the five separately normalized

confidence scores from each learner. We found that this second approach for ensembling

produces better results and it is used in our experiments.

3.3 Thresholding

With confidence scores for each instance, the end-user of CVIC now has an idea of the quality

of the initial clustering and can be made aware of points which may merit human-inspection.

However, these values do not directly correlate to the probability that an instance is clustered

correctly, indeed the scores are relative and need to be considered in the context of the rest of

the scores in a given cluster. In order to use these scores to find points which are misclustered,
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we calculate a threshold τ as some fraction of standard deviations above or below the mean

of all instance’s confidence scores on a per cluster basis as follows:

τ = µ(con(X))− ασ(con(X))

where X is a vector of all points in a given cluster, σ is the standard deviation, µ is the

arithmetic mean, and α is set by the user, and represents the number of standard deviations

above or below the mean the threshold value should be. A reasonable default for α is 1. Each

cluster now has its own τ which can be used to mark all points falling below τ as potentially

misclustered. These points can either be reclustered, or manually inspected/labeled.

3.4 Choosing K

We also present a solution to the problem of choosing the correct number of clusters. CVIC’s

confidence scores can be used in aggregate to suggest a good number of clusters. The formula

for calculating an index based on confidence scores is presented below:

1

k
∗ σ ∗ |S| (Eq. 1)

where σ is the standard deviation, k is the number of clusters, and |S| is the number of points

with confidence scores below one standard deviation from the mean.

This index can be used similarly to other popular indices, simply by creating several

clusterings with different k values and then choosing the value of k that minimizes the index.

Intuitively, the index works as follows: If the standard deviation of the scores is low, then the

clustering has little noise, and most instances are easy for the supervised learner to classify,

meaning the σ term brings the score down. Similarly in a good clustering one would expect

the size of S to be small since fewer points would be removed. This portion of the index also

lowers the score. It is generally true that more clusters are preferred to fewer clusters and

the 1/k term serves to penalize small clusterings with only one or two clusters.
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Chapter 4

Experiments and Results

This section describes our experimental setup and presents results on 20 different

data sets using 5 different clustering algorithms. We compare CVIC to silhouette, fuzzy

membership and isolation as three additional methods for assigning confidence scores to

individual instances.

We show results for the average f-score of each method for finding correctly clustered

points and misclustered points on each data set using neural gas clustering and include similar

tables in the appendix for the other four clustering algorithms. We show results for the

average number of points uniquely indentified by each method. We show results on choosing

k on 12 synthetic data sets compared to several other validity methods. We also include a

brief discussion on the time-completixy of the various algorithms.

We find that on average CVIC outperforms other instance-based validation techniques,

and offers a unique perspective on cluster validation.

4.1 Clustering Algorithms

The five clustering algorithms described below were used in our experiments and were

specifically chosen to represent a broad range of clustering approaches and especially for

their speed. Seeing as some data sets used contain upwards of 50,000 points in hundreds

of dimensions, non-quadratic time and space complexity of the algorithms used is highly

desirable. However, the BIRCH and spectral clustering algorithms did cluster subsets of some
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of the larger data sets rather than the entire data set to speed performance. In these cases

the points that were not included in the clustered subset were mapped to the clusters so that

every instance was still assigned a cluster.

Kmeans++

Kmeans++ [1] is a straightforward improvement to the classical k-means clustering algorithm.

Specifically, it is an algorithm for choosing inital values, or “seeds”, for the k-means algorithm

in such a way as to avoid poor clusterings. It works by probabilistically choosing as initial

points instances that are far from each other. Then standard k-means is run. This setup

requires O(k2) time, but significantly decreases the time it takes for k-means to converge.

Neural Gas

Neural gas is a competitive clustering algorithm inspired by self-organizing maps [19]. During

learning each neuron in the network sorts itself according to its distance from the current

input signal. The sorting is then used to drive an adaptation step where each neuron is

changed incrementally as in gradient descent. This process of adapting all neurons leads to a

more robust convergence compared to k-means. It has a run time of O(nki) where i is the

number of iterations until convergence [22].

Growing Neural Gas

Growing neural gas is an extension to the neural gas algorithm, which can add and delete

nodes during execution. This growth is based on competitive Hebbian learning. Additionally,

growing neural gas has edge connections between nodes. Age of an edge helps the algorithm

make decisions about which nodes to delete, and the edges also serve as indicators of where

distinct clusters are. It runs in O(nlog(n)i) time [12].
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Spectral Clustering

Spectral clustering is a term for graph based clustering algorithms that use eigenvalues of the

similarity matrix to first perform a dimensionality reduction (similar to PCA) and then cluster

in the smaller space. For our experiments we use the random walk normalized Laplacian

matrix for eigenvalue calculation [24], which has been shown to be mathmatically equivalent

to the normalized cuts algorithm [34]. This type of decomposition naively takes O(n3) time,

but approximation methods and sub-sampling of the matrix can be used to speed up this

process to O(k3) where k < n is the number of samples. Even so, we found it necessary to

cluster a subset of the data for the larger data sets and then map the remaining points to

the given clusters.

BIRCH

BIRCH, or balanced iterative reducing and clustering using hierarchies, is designed to perform

hierarchical clustering on large data sets [44]. It first creates a clustering feature tree from a

single scan of the data set. It then clusters the leaves of the tree in a hierarchical manner

until a user specified k value is reached, or until a single cluster remains. In all, it makes two

passes through the data set and has time complexity of O(nm2) where m is the number of

leaf nodes to be clustered by hierarchical agglomerative clustering, or HAC.

4.2 Data sets

Table 4.1 details the 20 data sets used in the experiments. These data sets were chosen

specifically because the resulting clusters can easily be labeled by a human, i.e., each data set

is image based and contains distinguishable objects such as human faces, handwritten text,

digits, etc. In the case of the BANKNOTES, SEEDS, and LEAF data sets a labeler with

some domain knowledge of the visual differences between classes would be required. Of the
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data sets tested some contain high-dimensional data which serves to emphasize the need for

non-distance based measures and some contain lower dimensional data which helps to test the

generalizability of CVIC. We manually labeled each cluster by viewing the 5 points closest

to the centroid and assigning a label. Feature type is indicated in the table; CONFIRM

is a line-based dynamic programming approach for feature extraction in documents [39],

LEAF and SEEDS data sets both contain botanical features [8, 35], eye-tracking refers to

features based on human visual tracking patterns when shown an image [26], HOG refers to

Histogram of Oriented Gradients [9], Rath refers to the features used in [31] for word spotting,

and wavelets refer to various features of the shift-invariant wavelet transformed images [13].

PADEATHS, WALES, WASHPASS, CANADA, MISSOURI, NEBRASKA, and NEVADA

are all data sets provided by Ancestry.com and represent historical census-like data. COIL

[25], UMIST [14], USPS [14], CVL [18], and IAM [21] images were all scaled down to create

a smaller features space, since the input features are simply the raw grayscale pixel values.

The final image sizes are 32x32, 23x28, 16x16, 40x20, and 20x15 respectively. It should be

noted that the IAM data set is a subset of the original IAM data set, including only images

that had less than 10,000 total pixels. This was done due to the higher complexity of the

spectral and birch clustering algorithms, but is a representative subset of the original. The

table (and subsequent tables) is sorted by the number of classes.

4.3 Experiment 1 - F-score of High Confidence Points

The goal of CVIC is to assign confidences to individual instances and therefore provide

the end-user with a tool to find both instances which can be automatically labeled with

confidence and which are potentially misclustered. We conduct experiments on both the

success of finding high confidence points and low confidence points. One way to measure this

is to calculate the f-score–the harmonic average of precision and recall–of the selected points.

For our first experiment we consider high confidence points. The threshold τ is set to one
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Name Classes Instances Feature dimensions Feature Type Domain
IAM 6444 75213 300 pixels handwritten text
CVL 390 99705 800 pixels handwritten text
NEVADA DTW 146 38453 931 Rath handwritten text
NEVADA HOG 146 38453 224 HOG handwritten text
NEBRASKA DTW 101 62446 956 Rath handwritten text
NEBRASKA HOG 101 62446 224 HOG handwritten text
MISSOURI DTW 93 51036 947 Rath handwritten text
MISSOURI HOG 93 51036 224 HOG handwritten text
CANADA DTW 91 5553 956 Rath handwritten text
CANADA HOG 91 5553 240 HOG handwritten text
LEAF 36 340 16 domain-specific leaf images
COIL 20 1440 1024 pixels object images
UMIST 20 575 644 pixels face images
WALES 11 4800 1715 CONFIRM document images
POET 10 6258 16 eye-tracking object images
USPS 10 2007 256 pixels handwritten digits
PADEATHS 5 4974 403 CONFIRM document images
SEEDS 3 210 7 domain-specific seed images
BANKNOTES 2 1372 4 wavelets banknote images
WASHPASS 2 2000 268 CONFIRM document images

Table 4.1: Real-world data sets.
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standard deviation above the mean confidence score for each individual cluster. Precision is

calculated by counting the number of high confidence points that fall above the threshold

τ that are correctly clustered and dividing by the total number of high confidence points

above τ . Recall is calculated by taking the number of correctly clustered points above τ and

dividing by all correct points. Each of the data sets tested have ground-truth values available

and we use these in order to measure precision and recall, though in real applications of

clustering these values would not be known. The methods used for learning confidence scores

do not see these ground-truth labels; they are simply used to evaluate the performance of the

respective algorithms for detecting misclustered and correctly clustered instances.

Table 4.2 below shows results for the average f-score (over five runs) for each data

set using neural gas clustering. The CVIC-MLP, CVIC-SVM, CVIC-C4.5, CVIC-RForest,

CVIC-KNN and CVIC-Ensemble columns are all different implementations of CVIC using

the respective learners. We individually compare each one against the three distance based

methods of silhouette, fuzzy, and isolation. We have taken this approach for two reasons.

One is to perform a comparison between a single implementation of CVIC and the three

other methods to help illustrate that the framework of CVIC is viable, namely that different

supervised learners can be plugged in. The other reason is to try and discover if there

exists a single supervised learner that performs most successfully in CVIC. Therefore, a

bold and underlined CVIC value represents statistical significance over every distance-based

method according to a Wilcoxon signed-rank test at α =.05. A distance-based method with

a statistically significant value over all CVIC values is represented similarly. The median and

average values of each column are shown at the bottom. Similar tables for the remaining

four clustering methods are contained in the supplemental material section and neural gas

was chosen as a representative of the others.

The results for this experiment show the power of CVIC to detect a much larger

number of points than the other methods. In the case of the high dimensional handwritten
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.350 0.315 0.000 0.313 0.266 0.505 0.340 0.567 0.362
CVL 0.200 0.225 0.240 0.236 0.336 0.287 0.249 0.314 0.268
NV DTW 0.225 0.269 0.260 0.400 0.434 0.428 0.409 0.399 0.396
NV HOG 0.288 0.284 0.379 0.523 0.546 0.504 0.330 0.580 0.460
NB DTW 0.254 0.267 0.270 0.679 0.682 0.595 0.680 0.599 0.686
NB HOG 0.298 0.298 0.366 0.753 0.765 0.754 0.395 0.772 0.723
MO DTW 0.272 0.291 0.310 0.810 0.813 0.735 0.778 0.702 0.792
MO HOG 0.295 0.318 0.365 0.845 0.845 0.842 0.769 0.847 0.817
CAN DTW 0.275 0.291 0.301 0.705 0.759 0.753 0.462 0.679 0.637
CAN HOG 0.293 0.283 0.384 0.839 0.818 0.838 0.313 0.761 0.704
LEAF 0.471 0.351 0.659 0.524 0.338 0.570 0.529 0.594 0.555
COIL 0.199 0.298 0.833 0.733 0.570 0.702 0.381 0.724 0.470
UMIST 0.318 0.361 0.676 0.636 0.379 0.599 0.425 0.666 0.632
WALES 0.313 0.000 0.657 0.493 0.633 0.635 0.517 0.612 0.564
POET 0.246 0.194 0.357 0.265 0.372 0.341 0.373 0.331 0.351
USPS 0.316 0.374 0.783 0.817 0.801 0.802 0.729 0.821 0.805
PADEATHS 0.274 0.298 0.768 0.838 0.844 0.846 0.793 0.638 0.809
SEEDS 0.158 0.270 0.938 0.732 0.924 0.750 0.904 0.682 0.888
BANK 0.389 0.334 0.727 0.238 0.722 0.732 0.719 0.510 0.718
WASHPASS 0.168 0.222 0.998 0.947 0.934 0.943 0.851 0.666 0.900

MEDIAN 0.281 0.290 0.381 0.692 0.701 0.717 0.489 0.651 0.661
AVERAGE 0.280 0.277 0.513 0.616 0.638 0.658 0.547 0.623 0.626

Table 4.2: Average f-score of high confidence points over five runs for each method and data
set using neural gas clustering. Bolded and underlined values indicate statistical significance
of CVIC values greater than silhouette, fuzzy, or isolation and vice versa.
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data sets the recall values for the CVIC implementations are much higher than for the

distance based measures, and the precision values are slightly higher. This creates an f-score

that is significantly better for these data sets, and the cause appears to be tied to the idea

brought up in section 3.1 with the CANADA data set. Namely, the supervised learners are

learning what it means for an instance to belong to a given class since multiple clusters end

up with the same label and therefore CVIC can confidently select points that from a distance

perspective might be quite far from the centroid, therefore lowering the confidence for a

method like silhouette. The threshold τ can be manipulated through adjusting the number

of standard deviations away from the mean to consider, but although this increases the recall

of the distance methods it similarly will increase recall for CVIC.

On four of the data sets isolation significantly performs the best, but except in the

case of WASHPASS, it has lower precision than CVIC methods. Thus the better f-score is a

result of higher recall. We believe this is due in part to the fact that the learners have less

data to work with. This is easy to see since the tables are ordered by number of classes which

is closely tied to the size of the data set. The class distributions and number of points seem

to contribute to the results in subsequent experiments as well. Also influential to isolation’s

performance is the simplicity of its bias. Isolation finds points near the border of other

clusters and these points have lower confidences while points nearer the centroid have higher

confidences. This type of approach works well for the six more uniform data sets whereas for

more complicated clusterings and more complicated class distributions with long tails the

biases of supervised models are more appropriate.

4.4 Experiment 2 - F-score of Low Confidence Points

While the previous section focused on the scoring methods’ ability to determine high confidence

points, this section looks at the other half of the problem, namely, are low confidence points

actually misclustered? Depending on the end-user’s goals this could be just as important as
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.058 0.002 0.000 0.252 0.189 0.413 0.316 0.267 0.375
CVL 0.194 0.105 0.000 0.226 0.286 0.451 0.290 0.155 0.305
NV DTW 0.257 0.166 0.000 0.193 0.169 0.106 0.275 0.172 0.225
NV HOG 0.272 0.136 0.252 0.350 0.367 0.293 0.316 0.327 0.350
NB DTW 0.222 0.186 0.384 0.114 0.068 0.033 0.206 0.106 0.151
NB HOG 0.286 0.155 0.259 0.364 0.371 0.250 0.342 0.354 0.384
MO DTW 0.225 0.158 0.073 0.124 0.072 0.059 0.214 0.116 0.203
MO HOG 0.327 0.203 0.272 0.315 0.323 0.261 0.344 0.294 0.379
CAN DTW 0.247 0.127 0.409 0.300 0.242 0.190 0.336 0.264 0.344
CAN HOG 0.308 0.264 0.322 0.337 0.204 0.241 0.270 0.316 0.315
LEAF 0.298 0.000 0.376 0.272 0.315 0.244 0.343 0.381 0.324
COIL 0.409 0.000 0.454 0.199 0.229 0.310 0.321 0.401 0.363
UMIST 0.364 0.039 0.391 0.196 0.241 0.169 0.323 0.342 0.310
WALES 0.258 0.000 0.010 0.068 0.172 0.075 0.181 0.010 0.160
POET 0.279 0.130 0.174 0.265 0.085 0.012 0.110 0.080 0.184
USPS 0.295 0.000 0.449 0.342 0.344 0.248 0.462 0.500 0.469
PADEATHS 0.387 0.135 0.368 0.106 0.118 0.049 0.290 0.157 0.207
SEEDS 0.526 0.548 0.597 0.542 0.487 0.074 0.411 0.490 0.527
BANK 0.358 0.341 0.103 0.251 0.099 0.041 0.094 0.051 0.121
WASHPASS 0.008 0.008 0.222 0.047 0.022 0.080 0.008 0.400 0.022

MEDIAN 0.282 0.132 0.265 0.251 0.216 0.179 0.302 0.280 0.312
AVERAGE 0.278 0.135 0.255 0.243 0.220 0.179 0.272 0.258 0.285

Table 4.3: Average f-score of low confidence points over five runs for each method and data
set using neural gas clustering. Underlines indicate statistical significance in a row, and bold
indicates CVIC values greater than silhouette, fuzzy, or isolation and vice versa.

finding correct points. In this case we detect points by defining the threshold as one standard

deviation below the mean.

Table 4.3 shows the average f-score over five runs for each method on each data set

using neural gas clustering, and similar tables for the other clustering algorithms can be

found in the appendix. The formatting is the same as Table 4.2 from the previous section.

Table 4.3 highlights the difficulty in detecting misclustered points, and shows that the

different methods perform well on different domains. In the case of detecting misclustered

points CVIC is well suited for high dimensional tasks with many clusters, particularly the

ones using HOG features. Interestingly, the data sets which used word-spotting features had

much lower recall which in turn lowered the f-score. This seems to be due to the fact that the

features are not as discriminating as HOG and the models tended to have higher confidences
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in the instances, so relatively few points were selected. Silhouette and isolation perform

well on the other tasks, and again this is more due to having higher recall (as opposed to

precision) than CVIC. However, median and average are important measures as well since in a

typical clustering task the class distributions, data set complexity, and appropriate clustering

algorithm are not often known. Therefore, with no specific knowledge of the data set to be

validated a choice between silhouette, isolation, fuzzy, or CVIC can in part be determined by

the average or median across several data sets and domains. In Table 4.3 CVIC-Ensemble

has the best value for each.

Table 4.4 summarizes the results for detecting correctly clustered and misclustered

points. We rank the methods for each data set on all five clustering algorithms. For detecting

low confidence points the ensemble method and random forest perform best, and for high

confidence points the support vector machine performs best. If, however, we consider the

application of CVIC to include detecting high and low confidence points at the same time

the final section of the table suggests that for the more spherical based clustering algorithms

such as k-means and neural gas that an ensemble of the learners performs best where as with

spectral and birch clustering knn or isolation perform best. However, it is easy to make the

argument that to detect low confidence points a CVIC-RForest could be run, and to detect

high confidence points an CVIC-SVM could be run.

Although the f-score is a useful measure, another informative indicator for this type of

comparison study is the number of unique points found by each scoring method. Figures 4.1

and 4.2 graph the average number of unique points found by each method. This is defined as

misclustered or correctly clustered points that were found only by a single method. When

considering uniqueness we compare a single CVIC implementation to just the silhouette,

isolation and fuzzy methods. Again this is done in an attempt to demonstrate the potential

of the framework and that different supervised learners can be plugged-in. It is also done to

try and find a single learner thay may be the best “out of the box” implementation of CVIC.
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Low Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

KMEANS 4.65 5.90 4.15 5.10 5.35 7.05 3.80 5.75 3.25
GAS 4.20 6.70 4.85 4.55 5.60 6.70 4.25 4.95 3.25
GROWING 3.90 4.55 5.05 4.05 5.55 7.40 4.65 7.00 3.20
SPECTRAL 3.80 6.40 4.65 6.05 4.75 6.35 3.50 4.65 5.00
BIRCH 4.55 6.75 4.50 4.40 5.56 6.30 4.15 4.90 4.30
High
KMEANS 7.85 7.75 4.90 3.95 3.75 3.85 4.55 4.40 4.05
GAS 7.95 7.85 4.80 4.45 3.15 3.30 5.05 4.05 4.40
GROWING 6.65 7.35 4.50 4.70 3.85 3.45 5.40 4.40 4.80
SPECTRAL 8.35 7.45 4.20 4.80 3.15 3.40 4.65 3.20 5.80
BIRCH 7.05 6.60 4.15 5.60 3.45 3.55 4.65 4.20 5.95
Both
KMEANS 6.25 6.82 4.52 4.52 4.55 5.45 4.17 5.07 3.65
GAS 6.07 7.27 4.82 4.50 4.37 5.00 4.65 4.50 3.82
GROWING 5.27 5.95 4.77 4.37 4.70 5.42 5.02 5.70 4.00
SPECTRAL 6.07 6.95 4.42 5.42 3.95 4.87 4.07 3.93 5.40
BIRCH 5.80 6.67 4.32 5.00 4.50 4.92 4.40 4.55 5.12

Table 4.4: Average rank of f-score for low and high confidence points over each data set and
clustering algorithm. Bold indicates best value in a row. The section titled “Both” shows the
average of the low and high confidence ranks.

The data shown for silhouette, isolation and fuzzy is the average number of unique points

found compared to each different CVIC implementation.

Figure 4.1: Average number of unique misclustered points found by each method.
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Figure 4.2: Average number of unique correctly clustered points found by each method.

This was done to reduce the number of comparisons shown, but accurately reflects the number

of unique points found by the methods when compared to just a single CVIC implementation.

Figures 4.1 and 4.2 demonstrate the distinct properties of CVIC. Nearly every implementation

of CVIC finds more unique misclustered points than the distance based measures across all

clustering algorithms. In the case of finding correctly clustered points, each CVIC method

finds more unique points. The ability to find unique points supports the notion that non-

distance based approaches have value and focusing on the question of what it means to belong

to a cluster as seen by a supervised learner provides a distinct approach to discovering points

that may or may not belong to a given cluster. We discuss these findings further in section 5.

When considering individual clustering algorithms and data sets, our results indicate

that with some domain knowledge an end-user may select CVIC, silhouette or isolation to

obtain good instance-based confidences. However, in clustering tasks, the class distributions,

number of clusters, or difficulty in clustering may not be known ahead of time. This study

shows that on average CVIC performs well and is therefore a viable choice for confidence

27



www.manaraa.com

scores. Our results also suggest that a combination of the distance based techniques and

CVIC would yield good results. We have performed a few preliminary tests of different

combinations and found that although precision or recall could be raised it is difficult to

raise both simultaneously. Future work will consider the difficult problem of successfully

combining the distance based and supervised methods.

4.5 Experiment 3 - Choosing K

Lastly, we show results for determining the correct k value for the 12 synthetic data sets. We

use Eq. 1 with our confidence scores to produce an index which when minimized suggests the

correct k. Each dataset is clustered several times with a different k value each time ranging

from 2 to 9. We compare with several indices from the literature (Davies-Bouldin (DB),

XieBeni, I, SV, Silhouette, and Dunn’s) that follow the same pattern, namely run several

clusterings and calculate the index, then select the k which corresponds to the maximum or

minimum index. As shown in Table 4.3 CVIC competes well with other indices, but silhouette

does the best getting 11 out of 12 k values correct.

Figure 4.3: Table of number of data sets out of 12 in which the correct k was chosen

This experiment, while not the main focus of our work, shows the flexibility of

CVIC and provides a solution to the question of how many clusters exist in a data set–a

common question to answer when considering cluster validity. Again, we emphasize that

using supervised learners provides a viable alternative to cluster validation and merits further

study.
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4.6 Experiment 4 - Run-Time Complexity

We provide a brief complexity analysis of the various methods. Silhouette runs in O(n2)

time because each point uses the distances to all other points. Similarly, the isolation

index performs a nearest neighbor search which naively is O(n2), but might be improved to

O(n logn) time with the use of a binary structure such as a k-d tree or cover tree. However

it has been shown that in high dimensional spaces these structures do not provide any gains

[16]. The fuzzy membership calculation is simply based on centroids requiring O(kn) and is

the fastest algorithm. The neural network is O(in) where i is the number of iterations until

training stops, but it also has large constants tied to the complexity of the net. SVMs involve

solving a quadratic optimization that takes between O(n2) and O(n3) time for each iteration

depending on the soft margin parameter [5]. The C4.5 tree runs in O(nm2) where m is the

number of features [38]. A random forest trains each tree on a subset of the features and data

and each tree therefore runs in O(nm) where m is the square root of the number of features.

K-nearest neighbors has the same analysis as isolation. Overall the CVIC framework has

run times as follows. The human labelling portion requires k labelling queries where k is

the number of clusters and is much smaller than n. These queries are easily and efficiently

answered. The calculation of the threshold requires calculating the standard deviation for

each cluster which is O(km) where k is number of clusters and m is the number of points in

a given cluster. Lastly, selecting points which are high and low confidence takes O(n) time.

Therefore the complexity of CVIC is only limited by its supervised learner and as such the

runtimes are better or equal to silhouette and isolation except in the case of the SVM.
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Chapter 5

Discussion

Our results show that on the data sets tested CVIC on average assigns confidence

scores that more accurately reflect both misclustered and correctly clustered points compared

to the other methods. When comparing each of these methods it should be kept in mind

the trade-off between detecting low confidence points and high confidence points. CVIC’s

ensemble has the most consistent results across each performance metric. Combining CVIC

with other methods does come at the cost of longer run times and the difficulty of deciding

how best to combine the methods. An obvious candidate for ensembling that was not explored

in the results section is a combination of the distance based measures with the supervised

learners in CVIC. We found, however, that this approach did not gain any advantages except

on the LEAF and SEEDS data sets. This is partly due to the difficulty of robustly combining

the scores, and partly due to the fact that simply taking the union of the methods results in

poor precisions. This idea is further discussed in the future work section.

High confidence points seem to be easier to succesfully detect than low confidence

points. This makes sense because given a clustering that is generally accurate, a liberal

detection method, which accepts all points, will have high recall and a precision that is

near the baseline clustering accuracy. The SVM seems to perform best here because of the

maximum margin used by SVMs. The confidence score that comes from the SVM is influenced

by the distance a point is to the margin and therefore the SVMs scores tend to be higher for

more points than they would be for another supervised model. In the case of finding correctly

30



www.manaraa.com

clustered points this is favorable because the initial clustering is likely to have a fair number

of the points already correctly clustered and the SVM being more liberal with its scores is

favorable. However, for low confidence points there are multiple reasons for misclustering and

it is harder to detect all of the misclustered points because several different approaches may be

necessary. This is one argument for the success of the ensemble or random forest in detecting

misclustered points since they consider several different biases. By recasting the problem

from unsupervised validation to a supervised classification problem we have introduced a

different inductive bias to the problem. Viewed another way, we have essentially created

a non-distance based method, where we look at both output from a clustering algorithm

and a supervised learner (or ensemble of learners) to validate an individual instance. The

learner serves to either reinforce the given clustering, or to point to instances that should

be reconsidered. We have shown this technique to be robust to the selection of data set or

clustering algorithm.

Figure 5.1: Example of 3 clusters, dotted black lines denote clusters, stars represent centroids,
thick yellow line represents the decision boundary.
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Figure 5.1 helps to illustrate the gains CVIC provides for finding unique points. In the

example there are three distict clusters, but points A and B have been misclustered. Point A

could be considered an outlier and atypical of its class and point B is a singleton. All the

methods can easily find point A and label it as low-confidence, but only CVIC is able to

find point B as well. This occurs because silhouette and fuzzy are concerned with distances

to other points and the idea that points are lower confidence if they are near borders to

other clusters. Isolation follows the same philosophy, point A’s nearest neighbors are not

all the same class, but point B’s nearest neighbors are. If we draw hypothetical decision

surfaces for a supervised learner we can see that point B has lower confidence because it is less

typical of a point that belongs to said cluster. Though this example is admittedly contrived

due to its simplistic and two-dimensional nature, it illustrates the point that the cluster,

distance, and centroid focused framework for solving validation problems used by silhouette

and others may be insufficient in some cases, and that at higher dimensions this problem is

exacerbated. Therefore the perspective offered by a supervised learner can add significant

new information to these types of problems. One negative aspect of CVIC is the fact that

we are using supervised models such as multilayer perceptrons, support vector machines,

and decision trees and as such the model is tied to hyperparameter selection. We performed

trial-and-error analysis to determine good hyperparameter values, e.g., learning rate, stopping

criteria, weight decay, and dropout rates for our MLP and other learners as outlined in section

3.2. This type of hyperparameter optimization is an ongoing area of research and in the case

where trial-and-error analysis is not an affordable approach, reasonable heuristics must be

used.
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Chapter 6

Conclusion and Future Work

We have developed a method of cluster validation that departs from more traditional

techniques and employs supervised learning to recast the problem into a nonlinear feature

space which addresses the problem in a way that incorporates different biases than those

of traditional distance metric based methods. We have shown on the data sets tested that

on average CVIC performs better than other distance based methods for assigning robust

confidence scores to clustered instances and that a simple combination of learners can provide

even more accuracy.

Silhouette, isolation, fuzzy membership, and CVIC all produce scores which can be

used to confidently detect points which are either misclustered or correctly clustered. However,

if one simply looks at the numbers assigned, in most cases they are unitless. For example, a

point may receive a score of .6 from any of the methods above, and this does not mean that

we are 60% confident in the point or that there is a 60% chance it was clustered correctly.

Looking at the score relative to other points in the cluster does give us an idea that there is

low or high probability of being correct, but a way to actually map scores to an intuitive

notion of confidence or probability is an area for future work. Our method of labelling points

some number of standard deviations below the mean “low-confidence” is sufficient to find a

fair amount of misclustered points, but does not really give the end-user a simple way to ask

for all points that are less than 80% confident. Simply normalizing the scores or trying to fit

some distribution to them seems to be insufficient to solve this problem.
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Another potential area for future work is in more complex supervised learners such

as deep networks or ensembles. Some preliminary work with ensembles of MLPs was done,

but the gains wre insignificant and the additional run time costs were severe. The only

requirement for a supervised learner to be used in CVIC is that a confidence score for

prediction must be extractable.

Finally, work with ensembling the various scoring methods could be further explored.

This option has appeal due to the success of the current ensemble method. However,

determining the best way to combine the scores is yet unknown. For example, silhouette

scores range between -1 and 1 whereas CVIC scores are tied to the normalization of the

network’s activation layer, which in our case ends up being between 0 and 1. Although further

normalization could be done to appropriately combine scores, they still would not reflect a

true confidence. For example, a point that receives a score of 0 does not necessarily indicate

that there in no confidence in that point belonging to its cluster. Therefore, a more principled

approach to assiging intuitive scores will lead to improvements when using combined methods.
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Appendix A

Supplemental Material

A.1 Synthetic Data sets

The following are images of the 12 synthetic data sets used for selection of k in experiment 3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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A.2 Tables for Various Clusterings

The following are tables for the remaining four clustering algorithms mentioned in experiments

1 and 2. Average f-scores for high and low confidence points. Numbers in bold and underlined

indicate indicate statistical significance as described in section 4.3. Zeros indicate that no

points were found for that particular threshold τ , but running at a less strict threshold did

not significantly change outcomes.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.148 0.048 0.000 0.263 0.187 0.377 0.324 0.320 0.360

CVL 0.248 0.265 0.375 0.281 0.296 0.220 0.298 0.160 0.293

NV DTW 0.225 0.254 0.361 0.058 0.029 0.026 0.179 0.012 0.096

NV HOG 0.255 0.096 0.291 0.324 0.325 0.274 0.312 0.315 0.335

NB DTW 0.211 0.236 0.249 0.025 0.120 0.002 0.039 0.002 0.037

NB HOG 0.272 0.121 0.306 0.348 0.361 0.253 0.342 0.363 0.385

MO DTW 0.190 0.206 0.260 0.037 0.169 0.002 0.046 0.000 0.048

MO HOG 0.296 0.215 0.293 0.312 0.296 0.231 0.349 0.294 0.374

CAN DTW 0.161 0.146 0.240 0.186 0.206 0.078 0.284 0.153 0.227

CAN HOG 0.265 0.278 0.331 0.327 0.202 0.251 0.277 0.331 0.332

LEAF 0.333 0.006 0.384 0.259 0.304 0.286 0.346 0.383 0.350

COIL 0.392 0.036 0.330 0.173 0.236 0.294 0.351 0.311 0.359

UMIST 0.349 0.093 0.403 0.204 0.289 0.188 0.327 0.342 0.326

WALES 0.302 0.000 0.029 0.055 0.153 0.110 0.186 0.027 0.153

POET 0.265 0.133 0.203 0.132 0.109 0.018 0.120 0.054 0.121

USPS 0.278 0.105 0.380 0.300 0.319 0.223 0.437 0.414 0.413

PADEATHS 0.245 0.106 0.364 0.337 0.261 0.131 0.450 0.214 0.403

SEEDS 0.528 0.539 0.515 0.491 0.435 0.067 0.357 0.436 0.475

BANK 0.333 0.309 0.086 0.216 0.068 0.029 0.111 0.042 0.094

WASHPASS 0.362 0.348 0.309 0.335 0.136 0.367 0.379 0.600 0.377

MEDIAN 0.268 0.139 0.307 0.261 0.220 0.203 0.318 0.302 0.333

AVERAGE 0.282 0.176 0.285 0.233 0.225 0.171 0.275 0.238 0.277

Table A.1: Average f-score for low confidence points over five runs using kmeans.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.058 0.002 0.000 0.252 0.188 0.413 0.316 0.267 0.375

CVL 0.207 0.255 0.248 0.246 0.208 0.142 0.246 0.089 0.252

NV DTW 0.267 0.279 0.114 0.054 0.052 0.006 0.087 0.002 0.076

NV HOG 0.239 0.176 0.389 0.331 0.324 0.193 0.290 0.280 0.324

NB DTW 0.201 0.240 0.062 0.042 0.120 0.004 0.031 0.004 0.051

NB HOG 0.180 0.189 0.264 0.250 0.212 0.089 0.309 0.232 0.270

MO DTW 0.206 0.214 0.227 0.066 0.128 0.002 0.062 0.000 0.079

MO HOG 0.233 0.259 0.350 0.381 0.283 0.178 0.332 0.273 0.401

CAN DTW 0.256 0.107 0.345 0.298 0.215 0.135 0.324 0.219 0.312

CAN HOG 0.263 0.235 0.277 0.325 0.207 0.235 0.266 0.296 0.331

LEAF 0.371 0.000 0.073 0.258 0.230 0.000 0.000 0.069 0.245

COIL 0.405 0.358 0.347 0.301 0.244 0.321 0.307 0.242 0.356

UMIST 0.322 0.131 0.315 0.243 0.225 0.140 0.296 0.285 0.282

WALES 0.298 0.000 0.012 0.120 0.099 0.055 0.163 0.008 0.136

POET 0.244 0.235 0.031 0.159 0.050 0.006 0.067 0.012 0.124

USPS 0.403 0.348 0.296 0.324 0.285 0.143 0.377 0.338 0.363

PADEATHS 0.364 0.105 0.071 0.102 0.066 0.020 0.198 0.023 0.128

SEEDS 0.519 0.452 0.450 0.544 0.529 0.262 0.434 0.451 0.542

BANK 0.379 0.414 0.000 0.161 0.062 0.000 0.029 0.000 0.065

WASHPASS 0.192 0.212 0.000 0.059 0.028 0.025 0.071 0.000 0.068

MEDIAN 0.259 0.224 0.237 0.247 0.207 0.112 0.255 0.154 0.261

AVERAGE 0.280 0.210 0.193 0.225 0.187 0.118 0.210 0.154 0.239

Table A.2: Average f-score for low confidence points over five runs using growing gas.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.113 0.000 0.000 0.236 0.183 0.406 0.328 0.328 0.343

CVL 0.194 0.000 0.000 0.235 0.358 0.297 0.307 0.266 0.170

NV DTW 0.250 0.173 0.000 0.024 0.087 0.062 0.252 0.100 0.006

NV HOG 0.247 0.131 0.468 0.091 0.360 0.285 0.293 0.338 0.002

NB DTW 0.188 0.114 0.000 0.056 0.070 0.031 0.225 0.108 0.026

NB HOG 0.260 0.130 0.416 0.162 0.379 0.244 0.336 0.369 0.008

MO DTW 0.181 0.124 0.299 0.020 0.069 0.027 0.240 0.139 0.006

MO HOG 0.333 0.169 0.387 0.157 0.335 0.197 0.362 0.318 0.006

CAN DTW 0.196 0.089 0.000 0.357 0.256 0.226 0.326 0.322 0.368

CAN HOG 0.301 0.320 0.304 0.359 0.206 0.248 0.282 0.332 0.338

LEAF 0.387 0.000 0.501 0.299 0.353 0.314 0.383 0.439 0.390

COIL 0.335 0.107 0.324 0.284 0.236 0.379 0.356 0.305 0.374

UMIST 0.243 0.012 0.346 0.187 0.258 0.147 0.302 0.308 0.275

WALES 0.301 0.000 0.035 0.019 0.127 0.099 0.152 0.033 0.143

POET 0.285 0.199 0.230 0.223 0.222 0.039 0.183 0.108 0.211

USPS 0.314 0.000 0.434 0.322 0.337 0.253 0.446 0.450 0.434

PADEATHS 0.356 0.132 0.286 0.073 0.118 0.047 0.295 0.104 0.217

SEEDS 0.471 0.400 0.452 0.364 0.445 0.179 0.387 0.412 0.443

BANK 0.264 0.240 0.095 0.239 0.113 0.018 0.096 0.046 0.172

WASHPASS 0.197 0.213 0.000 0.020 0.029 0.010 0.058 0.000 0.051

MEDIAN 0.262 0.127 0.292 0.205 0.229 0.188 0.298 0.306 0.191

AVERAGE 0.270 0.127 0.228 0.186 0.227 0.175 0.280 0.240 0.199

Table A.3: Average f-score for low confidence points over five runs using spectral.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.149 0.000 0.000 0.174 0.162 0.408 0.316 0.283 0.124

CVL 0.224 0.000 0.374 0.149 0.308 0.321 0.294 0.238 0.071

NV DTW 0.258 0.145 0.000 0.215 0.108 0.080 0.251 0.167 0.231

NV HOG 0.236 0.144 0.308 0.330 0.316 0.273 0.304 0.312 0.330

NB DTW 0.218 0.155 0.311 0.002 0.025 0.008 0.114 0.039 0.016

NB HOG 0.244 0.180 0.429 0.033 0.358 0.236 0.349 0.342 0.002

MO DTW 0.207 0.147 0.276 0.004 0.077 0.035 0.260 0.086 0.002

MO HOG 0.252 0.162 0.291 0.369 0.303 0.217 0.325 0.320 0.384

CAN DTW 0.215 0.109 0.000 0.389 0.222 0.178 0.344 0.255 0.371

CAN HOG 0.271 0.317 0.355 0.440 0.302 0.283 0.341 0.406 0.435

LEAF 0.402 0.000 0.410 0.373 0.206 0.303 0.347 0.384 0.407

COIL 0.408 0.000 0.315 0.244 0.225 0.308 0.274 0.354 0.301

UMIST 0.337 0.000 0.419 0.308 0.307 0.188 0.344 0.347 0.336

WALES 0.238 0.000 0.016 0.115 0.121 0.092 0.141 0.014 0.130

POET 0.307 0.219 0.212 0.224 0.149 0.029 0.136 0.076 0.217

USPS 0.236 0.000 0.401 0.366 0.296 0.228 0.378 0.362 0.387

PADEATHS 0.155 0.047 0.195 0.107 0.132 0.033 0.208 0.056 0.136

SEEDS 0.552 0.492 0.490 0.511 0.397 0.158 0.425 0.364 0.495

BANK 0.238 0.271 0.059 0.455 0.000 0.000 0.455 0.455 0.455

WASHPASS 0.049 0.054 0.200 0.205 0.125 0.395 0.086 0.250 0.165

MEDIAN 0.237 0.126 0.299 0.234 0.213 0.202 0.310 0.297 0.265

AVERAGE 0.259 0.122 0.252 0.250 0.206 0.188 0.284 0.255 0.249

Table A.4: Average f-score for low confidence points over five runs using BIRCH.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.331 0.325 0.000 0.323 0.299 0.503 0.373 0.579 0.387

CVL 0.157 0.165 0.130 0.193 0.172 0.193 0.190 0.184 0.192

NV DTW 0.234 0.277 0.333 0.428 0.423 0.421 0.433 0.335 0.432

NV HOG 0.282 0.290 0.352 0.534 0.537 0.488 0.367 0.551 0.492

NB DTW 0.255 0.255 0.462 0.682 0.386 0.549 0.693 0.125 0.684

NB HOG 0.298 0.305 0.359 0.762 0.770 0.752 0.460 0.778 0.741

MO DTW 0.289 0.294 0.531 0.806 0.405 0.662 0.812 0.008 0.808

MO HOG 0.291 0.322 0.356 0.844 0.842 0.839 0.772 0.846 0.821

CAN DTW 0.280 0.283 0.408 0.703 0.696 0.679 0.615 0.691 0.673

CAN HOG 0.296 0.283 0.400 0.848 0.816 0.839 0.326 0.789 0.736

LEAF 0.465 0.340 0.666 0.451 0.411 0.561 0.545 0.616 0.553

COIL 0.140 0.273 0.764 0.726 0.572 0.660 0.434 0.706 0.532

UMIST 0.340 0.374 0.678 0.645 0.446 0.525 0.494 0.661 0.628

WALES 0.274 0.000 0.636 0.464 0.657 0.594 0.528 0.553 0.521

POET 0.217 0.199 0.355 0.294 0.368 0.349 0.368 0.352 0.356

USPS 0.475 0.462 0.704 0.750 0.742 0.724 0.681 0.765 0.715

PADEATHS 0.297 0.319 0.763 0.872 0.872 0.856 0.801 0.612 0.845

SEEDS 0.163 0.298 0.930 0.621 0.913 0.634 0.901 0.854 0.889

BANK 0.379 0.335 0.714 0.207 0.706 0.723 0.701 0.532 0.718

WASHPASS 0.080 0.228 0.839 0.824 0.805 0.757 0.781 0.732 0.781

MEDIAN 0.285 0.292 0.496 0.663 0.614 0.646 0.536 0.614 0.678

AVERAGE 0.277 0.281 0.519 0.598 0.591 0.615 0.563 0.563 0.624

Table A.5: Average f-score for high confidence points over five runs using kmeans.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.352 0.315 0.000 0.310 0.266 0.505 0.340 0.567 0.362

CVL 0.154 0.152 0.103 0.118 0.141 0.172 0.113 0.159 0.119

NV DTW 0.240 0.253 0.410 0.424 0.425 0.416 0.421 0.087 0.425

NV HOG 0.231 0.240 0.423 0.441 0.480 0.472 0.329 0.496 0.397

NB DTW 0.266 0.252 0.688 0.690 0.403 0.695 0.692 0.695 0.688

NB HOG 0.247 0.297 0.465 0.729 0.729 0.700 0.689 0.706 0.723

MO DTW 0.258 0.283 0.748 0.809 0.662 0.796 0.812 0.782 0.810

MO HOG 0.296 0.324 0.407 0.837 0.838 0.840 0.787 0.858 0.831

CAN DTW 0.274 0.291 0.416 0.664 0.735 0.723 0.573 0.708 0.648

CAN HOG 0.267 0.284 0.646 0.763 0.820 0.842 0.297 0.832 0.673

LEAF 0.483 0.420 0.666 0.355 0.586 0.000 0.000 0.369 0.357

COIL 0.448 0.262 0.726 0.426 0.421 0.595 0.364 0.538 0.348

UMIST 0.350 0.360 0.653 0.597 0.377 0.593 0.472 0.634 0.562

WALES 0.467 0.000 0.518 0.262 0.406 0.473 0.383 0.312 0.291

POET 0.172 0.199 0.362 0.350 0.360 0.356 0.361 0.374 0.358

USPS 0.500 0.400 0.713 0.726 0.721 0.725 0.608 0.718 0.719

PADEATHS 0.229 0.303 0.896 0.852 0.881 0.887 0.819 0.632 0.833

SEEDS 0.542 0.321 0.945 0.741 0.922 0.934 0.873 0.863 0.867

BANK 0.748 0.200 0.732 0.753 0.744 0.000 0.727 0.000 0.743

WASHPASS 0.012 0.210 0.701 0.670 0.635 0.697 0.684 0.000 0.664

MEDIAN 0.270 0.283 0.649 0.667 0.610 0.645 0.522 0.599 0.655

AVERAGE 0.326 0.268 0.560 0.575 0.577 0.571 0.517 0.516 0.570

Table A.6: Average f-score for high confidence points over five runs using growing gas.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.312 0.356 0.668 0.653 0.401 0.560 0.467 0.655 0.607

CVL 0.124 0.102 0.116 0.134 0.143 0.138 0.142 0.142 0.132

NV DTW 0.210 0.276 0.238 0.263 0.429 0.411 0.443 0.399 0.245

NV HOG 0.250 0.285 0.347 0.382 0.555 0.497 0.317 0.575 0.310

NB DTW 0.266 0.252 0.688 0.690 0.403 0.695 0.692 0.695 0.688

NB HOG 0.247 0.297 0.465 0.729 0.729 0.700 0.689 0.706 0.723

MO DTW 0.231 0.290 0.279 0.246 0.817 0.779 0.765 0.798 0.199

MO HOG 0.257 0.308 0.333 0.305 0.844 0.836 0.765 0.852 0.218

CAN DTW 0.250 0.285 0.292 0.717 0.767 0.781 0.365 0.726 0.515

CAN HOG 0.281 0.284 0.381 0.844 0.811 0.851 0.284 0.807 0.732

LEAF 0.501 0.352 0.657 0.414 0.343 0.621 0.544 0.643 0.582

COIL 0.250 0.296 0.437 0.469 0.380 0.421 0.271 0.485 0.355

UMIST 0.312 0.356 0.668 0.653 0.401 0.560 0.467 0.655 0.607

WALES 0.408 0.000 0.624 0.416 0.597 0.571 0.516 0.518 0.550

POET 0.231 0.196 0.353 0.273 0.362 0.343 0.358 0.353 0.323

USPS 0.289 0.368 0.788 0.796 0.795 0.791 0.757 0.831 0.790

PADEATHS 0.250 0.310 0.751 0.837 0.846 0.792 0.799 0.500 0.815

SEEDS 0.051 0.294 0.919 0.712 0.904 0.833 0.851 0.931 0.843

BANK 0.391 0.336 0.762 0.747 0.768 0.766 0.731 0.602 0.742

WASHPASS 0.016 0.231 0.701 0.695 0.665 0.695 0.682 0.000 0.677

MEDIAN 0.250 0.291 0.409 0.442 0.630 0.657 0.528 0.621 0.532

AVERAGE 0.256 0.274 0.495 0.501 0.605 0.625 0.532 0.586 0.485

Table A.7: Average f-score for high confidence points over five runs using spectral.
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Silhouette Fuzzy Isolation CVIC-MLP CVIC-SVM CVIC-C4.5 CVIC-RForest CVIC-KNN CVIC-Ensemble

IAM 0.385 0.391 0.000 0.343 0.312 0.424 0.288 0.537 0.346

CVL 0.172 0.167 0.131 0.144 0.200 0.183 0.182 0.168 0.139

NV DTW 0.197 0.260 0.225 0.387 0.418 0.420 0.402 0.396 0.394

NV HOG 0.242 0.271 0.334 0.425 0.488 0.467 0.302 0.522 0.416

NB DTW 0.189 0.253 0.243 0.193 0.695 0.564 0.686 0.605 0.164

NB HOG 0.261 0.300 0.368 0.241 0.758 0.747 0.645 0.775 0.217

MO DTW 0.225 0.295 0.307 0.204 0.074 0.031 0.524 0.004 0.152

MO HOG 0.250 0.324 0.345 0.220 0.834 0.832 0.763 0.842 0.164

CAN DTW 0.249 0.285 0.263 0.523 0.713 0.717 0.417 0.652 0.568

CAN HOG 0.255 0.298 0.414 0.756 0.806 0.832 0.331 0.804 0.680

LEAF 0.482 0.394 0.684 0.533 0.339 0.536 0.565 0.584 0.555

COIL 0.417 0.302 0.818 0.428 0.465 0.568 0.346 0.498 0.291

UMIST 0.399 0.396 0.678 0.666 0.445 0.586 0.495 0.712 0.647

WALES 0.462 0.000 0.656 0.512 0.595 0.625 0.486 0.411 0.484

POET 0.184 0.203 0.368 0.337 0.361 0.340 0.368 0.311 0.349

USPS 0.256 0.343 0.802 0.737 0.770 0.788 0.661 0.780 0.713

PADEATHS 0.250 0.295 0.888 0.869 0.891 0.895 0.816 0.625 0.852

SEEDS 0.823 0.324 0.930 0.767 0.885 0.808 0.873 0.879 0.862

BANK 0.203 0.320 0.715 0.442 0.000 0.000 0.442 0.442 0.441

WASHPASS 0.170 0.224 0.998 0.902 0.936 0.886 0.850 0.666 0.891

MEDIAN 0.250 0.296 0.390 0.435 0.541 0.577 0.490 0.594 0.428

AVERAGE 0.303 0.282 0.508 0.481 0.549 0.562 0.522 0.560 0.466

Table A.8: Average f-score for high confidence points over five runs using BIRCH.
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[43] Krista Rizman Žalik and Borut Žalik. Validity index for clusters of different sizes and

densities. Pattern Recognition Letters, 32(2):221–234, 2011.

48



www.manaraa.com

[44] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering

method for very large databases. In ACM SIGMOD Record, volume 25, pages 103–114.

ACM, 1996.

49


	Brigham Young University
	BYU ScholarsArchive
	2015-11-01

	CVIC: Cluster Validation Using Instance-Based Confidences
	Dean M. LeBaron
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Automated Cluster Labeling
	2.2 Confidence Scores
	2.3 Cluster Validation

	3 CVIC - Cluster Validation using Instance-based Confidences
	3.1 Initial Clustering and Labeling
	3.2 Training and Initial Scoring
	3.3 Thresholding
	3.4 Choosing K

	4 Experiments and Results
	4.1 Clustering Algorithms
	4.2 Data sets
	4.3 Experiment 1 - F-score of High Confidence Points
	4.4 Experiment 2 - F-score of Low Confidence Points
	4.5 Experiment 3 - Choosing K
	4.6 Experiment 4 - Run-Time Complexity

	5 Discussion
	6 Conclusion and Future Work
	A Supplemental Material
	A.1 Synthetic Data sets
	A.2 Tables for Various Clusterings

	References

